The mechanisms underlying presenilin 1 (PSEN1) mutation-associated spastic paraparesis (SP) are not clear. We compared diffusion and volumetric magnetic resonance measures between 3 persons with SP associated with the A431E mutation and 7 symptomatic persons with PSEN1 mutations without SP matched for symptom duration. We performed amyloid imaging and central motor and somatosensory conduction studies in 1 subject with SP. We found decreases in fractional anisotropy and increases in mean diffusivity in widespread white-matter areas including the corpus callosum, occipital, parietal, and frontal lobes in PSEN1 mutation carriers with SP. Volumetric measures were not different, and amyloid imaging showed low signal in sensorimotor cortex and other areas in a single subject with SP. Electrophysiological studies demonstrated both slowed motor and sensory conduction in the lower extremities in this same subject. Our results suggest that SP in carriers of the A431E PSEN1 mutation is a manifestation of widespread white-matter abnormalities not confined to the corticospinal tract that is at most indirectly related to the mutation's effect on amyloid precursor protein processing and amyloid deposition.
Alzheimer disease (AD) represents a genetically heterogeneous entity. To elucidate neuropathologic features of autosomal dominant AD ([ADAD] due to PSEN1, APP, or PSEN2 mutations), we compared hallmark AD pathologic findings in 60 cases of ADAD and 120 cases of sporadic AD matched for sex, race, ethnicity, and disease duration. Greater degrees of neuritic plaque and neurofibrillary tangle formation and cerebral amyloid angiopathy (CAA) were found in ADAD (p values < 0.01). Moderate to severe CAA was more prevalent in ADAD (63.3% vs. 39.2%, p = 0.003), and persons with PSEN1 mutations beyond codon 200 had higher average Braak scores and severity and prevalence of CAA than those with mutations before codon 200. Lewy body pathology was less extensive in ADAD but was present in 27.1% of cases. We also describe a novel pathogenic PSEN1 mutation (P267A). The finding of more severe neurofibrillary pathology and CAA in ADAD, particularly in carriers of PSEN1 mutations beyond codon 200, warrants consideration when designing trials to treat or prevent ADAD. The finding of Lewy body pathology in a substantial minority of ADAD cases supports the assertion that development of Lewy bodies may be in part driven by abnormal β-amyloid protein precursor processing.
Vascular compliance (VC) is an important marker for a number of cardiovascular diseases and dementia, which is typically assessed in the central and peripheral arteries indirectly by quantifying pulse wave velocity (PWV), and/or pulse pressure waveform. To date, very few methods are available for the quantification of intracranial VC. In the present study, a novel MRI technique for in-vivo assessment of intracranial VC was introduced, where dynamic arterial spin labeling (ASL) scans were synchronized with the systolic and diastolic phases of the cardiac cycle. VC is defined as the ratio of change in arterial cerebral blood volume (ΔCBV) and change in arterial pressure (ΔBP). Intracranial VC was assessed in different vascular components using the proposed dynamic ASL method. Our results show that VC mainly occurs in large arteries, and gradually decreases in small arteries and arterioles. The comparison of intracranial VC between young and elderly subjects shows that aging is accompanied by a reduction of intracranial VC, in good agreement with the literature. Furthermore, a positive association between intracranial VC and cerebral perfusion measured using pseudo-continuous ASL with 3D GRASE MRI was observed independent of aging effects, suggesting loss of VC is associated with a decline in perfusion. Finally, a significant positive correlation between intracranial and central (aortic arch) VC was observed using an ungated phase-contrast 1D projection PWV technique. The proposed dynamic ASL method offers a promising approach for assessing intracranial VC in a range of cardiovascular diseases and dementia.
Performance on the Montreal Cognitive Assessment (MoCA) has been demonstrated to be dependent on the educational level. The purpose of this study was to identify how to best adjust MoCA scores and to identify MoCA items most sensitive to cognitive decline in incipient Alzheimer's disease (AD) in a Spanish-speaking population with varied levels of education.
Prior studies indicate psychiatric symptoms such as depression, apathy and anxiety are risk factors for or prodromal symptoms of incipient Alzheimer's disease. The study of persons at 50% risk for inheriting autosomal dominant Alzheimer's disease mutations allows characterization of these symptoms before progressive decline in a population destined to develop illness. We sought to characterize early behavioural features in carriers of autosomal dominant Alzheimer's disease mutations. Two hundred and sixty-one persons unaware of their mutation status enrolled in the Dominantly Inherited Alzheimer Network, a study of persons with or at-risk for autosomal dominant Alzheimer's disease, were evaluated with the Neuropsychiatric Inventory-Questionnaire, the 15-item Geriatric Depression Scale and the Clinical Dementia Rating Scale (CDR). Ninety-seven asymptomatic (CDR = 0), 25 mildly symptomatic (CDR = 0.5), and 33 overtly affected (CDR > 0.5) autosomal dominant Alzheimer's disease mutation carriers were compared to 106 non-carriers with regard to frequency of behavioural symptoms on the Neuropsychiatric Inventory-Questionnaire and severity of depressive symptoms on the Geriatric Depression Scale using generalized linear regression models with appropriate distributions and link functions. Results from the adjusted analyses indicated that depressive symptoms on the Neuropsychiatric Inventory-Questionnaire were less common in cognitively asymptomatic mutation carriers than in non-carriers (5% versus 17%, P = 0.014) and the odds of experiencing at least one behavioural sign in cognitively asymptomatic mutation carriers was lower than in non-carriers (odds ratio = 0.50, 95% confidence interval: 0.26-0.98, P = 0.042). Depression (56% versus 17%, P = 0.0003), apathy (40% versus 4%, P < 0.0001), disinhibition (16% versus 2%, P = 0.009), irritability (48% versus 9%, P = 0.0001), sleep changes (28% versus 7%, P = 0.003), and agitation (24% versus 6%, P = 0.008) were more common and the degree of self-rated depression more severe (mean Geriatric Depression Scale score of 2.8 versus 1.4, P = 0.006) in mildly symptomatic mutation carriers relative to non-carriers. Anxiety, appetite changes, delusions, and repetitive motor activity were additionally more common in overtly impaired mutation carriers. Similar to studies of late-onset Alzheimer's disease, we demonstrated increased rates of depression, apathy, and other behavioural symptoms in the mildly symptomatic, prodromal phase of autosomal dominant Alzheimer's disease that increased with disease severity. We did not identify any increased psychopathology in mutation carriers over non-carriers during the presymptomatic stage, suggesting these symptoms result when a threshold of neurodegeneration is reached rather than as life-long qualities. Unexpectedly, we found lower rates of depressive symptoms in cognitively asymptomatic mutation carriers.
Since the original publication describing the illness in 1907, the genetic understanding of Alzheimer's disease (AD) has advanced such that it is now clear that it is a genetically heterogeneous condition, the subtypes of which may not uniformly respond to a given intervention. It is therefore critical to characterize the clinical and preclinical stages of AD subtypes, including the rare autosomal dominant forms caused by known mutations in the PSEN1, APP, and PSEN2 genes that are being studied in the Dominantly Inherited Alzheimer Network study and its associated secondary prevention trial. Similar efforts are occurring in an extended Colombian family with a PSEN1 mutation, in APOE ε4 homozygotes, and in Down syndrome. Despite commonalities in the mechanisms producing the AD phenotype, there are also differences that reflect specific genetic origins. Treatment modalities should be chosen and trials designed with these differences in mind. Ideally, the varying pathological cascades involved in the different subtypes of AD should be defined so that both areas of overlap and of distinct differences can be taken into account. At the very least, clinical trials should determine the influence of known genetic factors in post hoc analyses.
Prior studies of US Hispanics, largely performed on the East Coast, have found a younger age of dementia onset than in White non-Hispanics. We performed a cross-sectional study to examine clinical and sociodemographic variables associated with age of dementia diagnosis in older Hispanics and White, non-Hispanics in southern California.